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ABSTRACT

V. D. Milman proved in [20] that the product of two strictly singular

operators on Lp[0, 1] (1 6 p < ∞) or on C[0, 1] is compact. In this

note we utilize Schreier families Sξ in order to define the class of Sξ-

strictly singular operators, and then we refine the technique of Milman

to show that certain products of operators from this class are compact,

under the assumption that the underlying Banach space has finitely many

equivalence classes of Schreier-spreading sequences. Finally we define the

class of Sξ-hereditarily indecomposable Banach spaces and we examine

the operators on them.

1. Introduction

In this paper we extend the work of V. D. Milman [20] which showed that

the product of two strictly singular (bounded linear) operators on Lp[0, 1]

(1 6 p < ∞) or on C[0, 1] is compact. The importance of this fundamental re-

sult of V. D. Milman lies in the fact that compact operators are well-understood,

unlike strictly singular ones.

First, we use the Schreier families Sξ for 1 6 ξ < ω1 which were introduced

by D. Alspach and S. A. Argyros [1] and define the classes of Sξ-strictly singular

operators as follows (Definition 2.1 in the main text).

Definition A: If X1, X2 are Banach spaces, T ∈ L(X1, X2) and 1 6 ξ < ω1,

we say that T is Sξ-strictly singular and write T ∈ SSξ(X1, X2) if for every

ε > 0 and every basic sequence (xn) there exist a set F ∈ Sξ and a vector

z ∈ [xi]i∈F \ {0}, ([xi]i∈F stands for the closed linear span of {xi}i∈F ), such

that ‖Tz‖ 6 ε‖z‖. If X1 = X2 then we write T ∈ SSξ(X1).

These classes are increasing in ξ (i.e., if ξ < ζ then every Sξ-strictly singular

operator is an Sζ-strictly singular operator). Moreover, they exhaust the class

of strictly singular operators defined on separable Banach spaces. In particular

we have the following (Theorem 6.5 in the main text).

Theorem B: Let X be a separable Banach space, Y be a Banach space and

S ∈ L(X, Y ). Then S is strictly singular if and only if S is Sξ-strictly singular

for some ξ < ω1.
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We also define the notion of Schreier spreading sequence which is closely

related to the well-studied notion of spreading model. In fact, every seminor-

malized basic sequence has a Schreier spreading subsequence. For 1 6 ξ < ω1

we define an equivalence relation ≈ξ on the set of weakly null Schreier spreading

sequences of a Banach space (Definition 3.4). One of the main results of the

present paper, which is a refinement of the above mentioned result of V. D. Mil-

man, is our Theorem 4.1. Its statement is slightly stronger than the following

simplified version.

Theorem C: For a Banach space X and an ordinal 1 6 ξ < ω1, if the number

of the equivalence classes of the weakly null spreading sequences in X with

respect to the equivalence relation ≈ξ is equal to n < ∞, then the product of

any n + 1 Sξ-strictly singular operators on X is compact.

We also provide a similar result for products of strictly singular operators.

Applications of this result are given to Tsirelson type spaces, Read’s space [23]

and the invariant subspace problem.

Finally, for 1 6 ξ < ω1, we define the notion of Sξ-hereditarily indecompos-

able Banach space as a refinement of the notion of hereditarily indecomposable

(HI) Banach space, introduced by W. T. Gowers and B. Maurey [13]. If ξ < ζ,

then every Sξ-HI Banach space is an Sζ-HI space, and if X is a separable HI

space, then it is Sξ-HI for some 1 6 ξ < ω1 (Theorem 6.5). The study of op-

erators on complex Sξ-HI Banach spaces and their subspaces reveals that the

Sξ-strictly singular operators play an analogous role to that strictly singular

operators play on the analysis of operators on complex HI spaces. This indi-

cates a potential use of HI spaces towards the solution of the invariant subspace

problem (Corollary 6.12).

Schreier families. We recall the definition of the Schreier families Sξ (for

1 6 ξ < ω1) which was introduced by D. Alspach and S. A. Argyros [1]. Before

defining Sξ we recall some general terminology. Let F be a set of finite subsets

of N. We say that F is hereditary if G ∈ F , whenever G ⊆ F ∈ F . F is

spreading if whenever {n1, n2, . . . , nk} ∈ F with n1 < n2 < · · · < nk and

m1 < m2 < · · · < mk satisfies ni 6 mi for i 6 k, then {m1, m2, . . . , mk} ∈ F .

F is pointwise closed if F is closed in the topology of pointwise convergence in

2N. F is called regular if it is hereditary, spreading and pointwise closed. If A

and B are two finite subsets of N, then by A < B we mean that maxA < min B.
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Similarly, for n ∈ N and A ⊆ N, n 6 A means n 6 min A. We assume that

∅ < F and F < ∅ for any non-empty finite set F ⊆ N . If F and G are regular,

then let

F [G] =

{ n⋃

1

Gi : n ∈ N, G1 < · · · < Gn, Gi ∈ G for i 6 n, (min Gi)
n
1 ∈ F

}
.

If F is regular and n ∈ N, then we define [F ]n by [F ]1 = F and [F ]n+1 =

F
[
[F ]n

]
. If F is a finite set, then #F denotes the cardinality of F . If N is an

infinite subset of N, then [N ]<∞ denotes the set of all finite subsets of N . For

any ordinal number 1 6 ξ < ω1, Schreier families Sξ (⊆ [N]<∞) are defined as

follows: set

S0 =
{
{n} : n ∈ N

}
∪ {∅}, S1 =

{
F ⊆ N : #F 6 min F

}
.

After defining Sξ for some ξ < ω1, set

Sξ+1 = S1[Sξ].

If ξ < ω1 is a limit ordinal and Sα has been defined for all α < ξ, then fix a

sequence ξn ↗ ξ and define

Sξ =
{
F : n 6 F and F ∈ Sξn

for some n ∈ N
}
.

If N = {n1, n2, . . .} is a subsequence of N with n1 < n2 < · · · and F is a set of

finite subsets of N, then we define F(N) =
{
(ni)i∈F : F ∈ F

}
. We summarize

the properties of the Schreier families that we will need.

Remark 1.1: (i) Each Sξ is a regular family.

(ii) Sξ ⊆ Sξ+1 for every ξ. However, ξ < ζ does not generally imply Sξ ⊆ Sζ .

(iii) Let 1 6 ξ < ζ < ω1. Then there exists n ∈ N so that if n 6 F ∈ Sξ, then

F ∈ Sζ .

(iv) For n, m ∈ N we have that Sn[Sm] = Sn+m. This fails for infinite or-

dinals. However, the following is true: For all 1 6 α, β < ω1 there

exist subsequences M and N of N such that Sα[Sβ ](N) ⊆ Sβ+α and

Sβ+α(M) ⊆ Sα[Sβ ]. Also for all 1 6 ξ < ω1 and n ∈ N there exist subse-

quences M and N of N satisfying [Sξ]
n(N) ⊆ Sξn and Sξn(M) ⊆ [Sξ]

n.

(v) Let 1 6 β < α < ω1, ε > 0 and M be a subsequence of N. Then

there exists a finite set F ⊆ M and (aj)j∈F ⊆ R+ so that F ∈ Sα(M),∑
j∈F aj = 1 and if G ⊆ F with G ∈ Sβ , then

∑
j∈G aj < ε.

The proofs can be found in [5].
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2. Classes of strictly singular operators

Recall that a bounded operator T from a Banach space X to a Banach space Y

is called strictly singular if its restriction to any infinite-dimensional subspace

is not an isomorphism. That is, for every infinite dimensional subspace Z of

X and for every ε > 0 there exists z ∈ Z such that ‖Tz‖ < ε‖z‖. We say

that T is finitely strictly singular if for every ε > 0 there exists n ∈ N such

that for every subspace Z of X with dimZ > n there exists z ∈ Z such that

‖Tz‖ < ε‖z‖. In particular, for 1 6 p < q 6 ∞ the inclusion operator ip,q from

`p to `q is finitely strictly singular. We will denote by K(X, Y ), SS(X, Y ) and

FSS(X, Y ) the collections of all compact, strictly singular and finitely strictly

singular operators from X to Y , respectively. If X = Y we will write K(X),

SS(X) and FSS(X). It is known that these sets are norm closed operator ideals

in L(X), the space of all bounded linear operators on X , see [20, 26] for more

details on these classes of operators. It is well-known that K(X) ⊆ FSS(X) ⊆

SS(X). We provide the proof for completeness. The second inclusion is obvious.

To prove the first inclusion, suppose that T is not finitely strictly singular. Then

there exists ε > 0 and a sequence (En) of subspaces of X such that dimEn = n

and T satisfies ‖Tx‖ > ε‖x‖ for each x ∈ En. Let Fn = T (En). It follows

that dimFn = n and, for every n and every y ∈ T (SEn
) we have that ‖y‖ > ε

(where SEn
denotes the unit sphere of En). Let z1 be in T (SE1). Suppose we

have already constructed z1, . . . , zk with zi ∈ T (SEi
) for i = 1, . . . , k. Using

[17, Lemma 1.a.6] or [11, Lemma of page 2] we can find zk+1 in T (SEk+1
) such

that dist
(
zk+1, [zi]

k
i=1

)
> ε/2. Iterating this procedure we produce a sequence

(zi) in T (BX) satisfying ‖zi − zj‖ > ε/2 whenever i 6= j. It follows that T is

not compact.

In this article, we define and study certain classes of strictly singular opera-

tors. We also refine certain results about strictly singular operators to the

classes of operators that we introduce.

Definition 2.1: If X1, X2 are Banach spaces, T ∈ L(X1, X2) and 1 6 ξ < ω1,

we say that T is Sξ-strictly singular and write T ∈ SSξ(X1, X2) if for every

ε > 0 and every basic sequence (xn) there exist a set F ∈ Sξ and a vector

z ∈ [xi]i∈F \ {0}, ([xi]i∈F stands for the closed linear span of {xi}i∈F ), such

that ‖Tz‖ 6 ε‖z‖. If X1 = X2 then we write T ∈ SSξ(X1).
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The main difficulty in checking that an operator is Sξ-strictly singular, seems

to be that one has to verify Definition 2.1 for all basic sequences (xn). Notice

that without loss of generality it is enough to check all normalized basic se-

quences. Also notice that if X1 and X2 are Banach spaces then T ∈ SSξ(X1, X2)

if and only if for every normalized basic sequence (xn) and ε > 0 there exist

a subsequence (xnk
), F ∈ Sξ and w ∈ [xnk

]k∈F \ {0} such that ‖Tw‖ 6 ε‖w‖.

This is easy to see, since F ∈ Sξ implies that {nk : k ∈ F} ∈ Sξ. For reflexive

Banach spaces with bases, we can narrow down this family of basic sequences

even more, as the following remark shows.

Remark 2.2: Let T ∈ L(X1, X2) and 1 6 ξ < ω1. If X1 is a reflexive Banach

space with a basis (en), then T ∈ SSξ(X1, X2) if and only if for any normalized

block sequence (yn) of (en) and ε > 0 there exists G ∈ Sξ and w ∈ [yn]n∈G \{0}

such that ‖Tw‖ 6 ε‖w‖.

Remark 2.2 follows from the classical fact below. Two basic sequences (xn)

and (yn) are called C-equivalent for some C > 1, denoted by (xn)
C
≈ (yn), if

for every (an) ∈ c00 we have that ‖
∑

anxn‖
C
≈ ‖

∑
anyn‖. (We write a

C
≈ b

if 1
C a 6 b 6 Ca.) Two basic sequences (xn) and (yn) are called equivalent,

denoted by (xn) ≈ (yn), if they are C-equivalent for some C > 1. Since X1

is reflexive then every normalized basic sequence (xn) in X1 is weakly null

and therefore by [7] it has a subsequence (xnk
) which is equivalent to a block

sequence (yk) of (en) and ‖xnk
− yk‖ → 0.

Remark 2.3: Let (xn) be a bounded sequence in a Banach space X . Then there

is a subsequence (xnk
) such that one of the following conditions hold.

(i) (xnk
) converges;

(ii) (xnk
) is equivalent to the unit vector basis of `1;

(iii) The difference sequence (dk) defined by dk = xn2k+1
− xn2k

is a seminor-

malized weakly null basic subsequence. Moreover, if X has a basis, then

(dk) is equivalent to a block sequence of the basis.

This is a standard result. Indeed, if (xn) has no subsequences satisfying (i)

or (ii) then Rosenthal’s `1 Theorem yields a weakly Cauchy subsequence (xnk
).

By passing to a further subsequence we may assume that the sequence

(xnk+1
− xnk

) is weakly null and seminormalized. Now (iii) follows by [7].
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In view of this Remark 2.3, the requirement “every basic sequence” in Defi-

nition 2.1 is “almost” as general as “every sequence”.

Proposition 2.4: Suppose that X and Y are two Banach spaces and 1 6

ξ, ζ < ω1. Then

(i) FSS(X, Y ) ⊆ SSξ(X, Y ) ⊆ SS(X, Y ).

(ii) If 1 6 ξ < ζ < ω1, then SSξ(X, Y ) ⊆ SSζ(X, Y ).

(iii) SSξ(X) is norm-closed;

(iv) If S ∈ SSξ(X) and T ∈ L(X), then TS and ST belong to SSξ(X).

(v) If S ∈ SSξ(X) and T ∈ SSζ(X), then S + T ∈ SSξ+ζ(X). In particular,

if S, T ∈ SSξ(X), then S + T ∈ SSξ2(X).

Proof. (i) It is obvious.

(ii) Indeed, for 1 6 ξ < ζ < ω1, by Remark 1.1(iii) there exists N ∈ N such

that if Sξ ∩
[
{N, N + 1, . . .}

]<∞
⊆ Sζ . Now if T ∈ SSξ(X, Y ), ε is a positive

number and (xn) is a normalized basic sequence in X , then consider the basic

sequence (yn) where yi = xN+i. There exists F ∈ Sξ and z ∈ [yi]i∈F \ {0} such

that ‖Tz‖ 6 ε‖z‖. Since F ∈ Sξ and F ⊆ {N, N + 1, . . .} we have that F ∈ Sζ .

(iii) Let (Tn)n ⊂ SSξ(X), T ∈ L(X) and limn Tn = T . Let (xn) be

a seminormalized basic sequence in X and ε > 0. Let n0 ∈ N such that

‖Tn0 −T ‖ 6 ε/2. Since Tn0 ∈ SSξ(X), there exist F ∈ Sξ and z ∈ [xi]i∈F \ {0}

such that ‖Tn0z‖ 6
ε
2‖z‖. Thus

‖Tz‖ 6
∥∥(Tn0 − T )z

∥∥ + ‖Tn0z‖ 6
ε

2
‖z‖+

ε

2
‖z‖ = ε‖z‖.

(iv) Let S ∈ SSξ(X) and T ∈ L(X). We show that TS ∈ SSξ(X). Let (xn)

be a basic sequence in X and ε > 0. If T = 0 then it is obvious that TS ∈

SSξ(X). Suppose that T 6= 0, then there exist F ∈ Sξ and z ∈ [xn]n∈F \ {0}

such that ‖Sz‖ 6
ε

‖T‖‖z‖. Thus, ‖TSz‖ 6 ‖T ‖‖Sz‖ 6 ε‖z‖. The proof that

ST ∈ SSξ(X) is due to A. Popov [22] who improved our original argument

which only worked in reflexive spaces.

(v) Let (xn)n∈N be a normalized basic sequence and ε > 0. By Remark 1.1(iv)

let N = (ni) be a subsequence of N such that Sζ [Sξ](N) ⊆ Sξ+ζ . Find F1 ∈

Sξ and w1 ∈ [xni
]i∈F1 such that ‖w1‖ = 1 and ‖Sw1‖ < ε/(8C) where C

is the basis constant of (xn). Since (xni
)i>F1 is again a basic sequence, we

can find F2 ∈ Sξ and w2 ∈ [xni
]i∈F2 such that F1 < F2, ‖w2‖ = 1, and

‖Sw2‖ < ε/(16C). Proceeding inductively we produce sets F1 < F2 < · · · and
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vectors wk ∈ [xni
]i∈Fk

with ‖wk‖ = 1 and ‖Swk‖ < ε
2k+2C

. Since (wk) is a basic

sequence, we find G ∈ Sζ and z ∈ [wk]k∈G\{0} such that ‖Tz‖ 6
ε
2‖z‖. Suppose

that G = {k1, . . . , km} and z =
∑m

i=1 aiwki
. Then we can write z =

∑
i∈F bixni

for some F ∈ Sξ[Sξ]. By the choice of N we have that z ∈ [(xi)i∈H ] for some

H ∈ Sξ+ζ . Also, |ai| 6 2C‖z‖. It follows that ‖Sz‖ 6
∑m

i=1|ai|‖Swki
‖ 6

2C ε
4C ‖z‖ = ε

2‖z‖, so that ‖(S + T )z‖ 6 ε‖z‖.

Of course, if 1 6 p < q < ∞ then any bounded operator from `q to `p is

compact. Also every bounded operator from `p to `q is strictly singular, [17].

Example 2.5: If 1 6 p < q < ∞, then any bounded operator T ∈ L(`p, `q)

belongs to SS1(`p, `q).

If 1 < p, then we can apply Remark 2.2. Let (xn) be a normalized block

sequence in `p and ε > 0. If infi‖Txi‖q = 0 then we are done (we denote by

‖·‖p and ‖·‖q the norms of `p and `q respectively). Hence, assume that (Txn)

is seminormalized. Since (xn) is weakly null, (Txn) is weakly null. By standard

gliding hump arguments [7] we can pass to a subsequence (Txni
) such that for

some seminormalized block sequence (yn) in `q,

∥∥∥∥
∑

i

aiTxni

∥∥∥∥
q

6 2

∥∥∥∥
∑

i

aiyi

∥∥∥∥
q

for every (ai) ∈ c00.

Hence for ε > 0 one can choose N ∈ N such that

∥∥∥∥T

( N∑

i=1

xnN+i

)∥∥∥∥
q

6 ε

∥∥∥∥
N∑

i=1

xnN+i

∥∥∥∥
p

.

Suppose that p = 1. Let (xn) be a normalized basic sequence in `1 and ε > 0. By

H. P. Rosenthal’s `1 theorem [25] after passing to a subsequence and relabeling

we can assume that (xn) is K-equivalent to the unit vector basis of `1 for some

K < ∞.

By applying Remark 2.3 to (Txn) there exists a subsequence (xnk
) of (xn)

such that the sequence (dk) defined by dk = Txn2k+1
− Txn2k

is either norm

null or satisfies (iii) of Remark 2.3. If (dk) is norm null, then there exists m > 2

such that ‖dm‖ < 2ε/K, so that

‖Txn2m+1 − Txn2m
‖ < ε ·

2

K
6 ε‖xn2m+1 − xn2m

‖.

Since {n2m, n2m+1} ∈ S1 we have T ∈ SS1(`1, `q).
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If (dk) is C-equivalent to a block sequence of the standard basis of `q then

for ε > 0 one can choose N ∈ N such that

∥∥∥∥T

( N∑

k=1

(xn2(N+k)+1
− xn2(N+k)

)

)∥∥∥∥ 6 ε

∥∥∥∥
N∑

k=1

(xn2(N+k)+1
− xn2(N+k)

)

∥∥∥∥.

Example 2.6: Suppose 1 < p < q < ∞ with p 6= q. Then it is known (see

[20, 21, 26]) that FSS(`p, `q) 6= SS(`p, `q) = L(`p, `q). Therefore, Example 2.5

yields FSS(`p, `q) 6= SS1(`p, `q).

Example 2.7: An example of a space X where SSξ(X) 6= SSζ(X) for some

1 6 ξ < ζ < ω1.

Fix 1 6 ξ < ω1 consider the space T [Sξ,
1
2 ] which is the completion of c00

with the norm that satisfies the implicit equation:

‖x‖ξ = max

{
‖x‖∞, sup

1

2

∑

i

‖Eix‖ξ

}
,

where ‖·‖∞ stands for the `∞ norm, and the supremum is taken for all sets

E1 < E2 < · · · such that (min Ei)i ∈ Sξ.

Since ξω is a limit ordinal, without loss of generality we can assume that the

sequence of ordinals in the definition of Sξω starts with ξ, then Sξ ⊆ Sξω and,

therefore, T [Sξω, 1
2 ] ⊆ T [Sξ,

1
2 ]. Consider the inclusion operator

iξ : T [Sξω, 1/2] → T [Sξ, 1/2].

Then iξ ∈ SSξω

(
T [Sξω, 1

2 ], T [Sξ,
1
2 ]

)
but iξ 6∈ SSξ

(
T [Sξω, 1

2 ], T [Sξ,
1
2 ]

)
.

Indeed, it is easy to verify that iξ 6∈ SSξ

(
T [Sξω, 1

2 ], T [Sξ,
1
2 ]

)
, since for every

F ∈ Sξ and scalars (ai)i∈F , we have that

∥∥∥∥iξ

( ∑

i∈F

aiei

)∥∥∥∥
ξ

= max

{
max
i∈F

|ai|,
1

2

∑

i∈F

|ai|

}
=

∥∥∥∥
∑

i∈F

aiei

∥∥∥∥
ξω

,

where (ei) denotes the standard basis of T [Sξω, 1
2 ].

Now we verify that iξ ∈ SSξω(T [Sξω, 1
2 ], T [Sξ,

1
2 ]). First recall that T [Sξω, 1

2 ]

is a reflexive Banach space with a basis [3, Proposition 1.1]. Thus we can apply

Remark 2.2. Let (xn) be a normalized block sequence in T [Sξω, 1
2 ] and ε > 0.

If there exists n ∈ N such that ‖iξxn‖ξ = ‖xn‖ξ 6 ε, then we are done. Else

assume that (iξxn)n is seminormalized. Let ni = min suppxi (where suppx
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stands for the support of the vector x, with respect to (ei)). By [19, Proposi-

tion 4.10] we have that (iξxi)
C
≈ (eni

) where C := 96 supi‖xi‖ξ/ infi‖xi‖ξ. We

have the following claim which uses the idea and generalizes [3, Proposition 1.5].

Claim 1: For every η > 0 there exists F ∈ Sξω and a convex combination

x :=
∑

i∈F ani
eni

such that ‖x‖ξ < η.

Once Claim 1 is proved, then by letting η := ε
2C it follows that

∥∥∥∥iξ

(∑

i∈F

ani
xi

)∥∥∥∥
ξ

=

∥∥∥∥
∑

i∈F

ani
xi

∥∥∥∥
ξ

6 C‖x‖ξ 6
ε

2

=
ε

2

∑

i∈F

ani
‖xi‖ξω 6 ε

∥∥∥∥
∑

i∈F

ani
xi

∥∥∥∥
ξω

.

Thus it only remains to establish Claim 1. For this purpose we need to

identity a norming set N ξ of T [Sξ,
1
2 ]. We follow [3, p. 976]: Let

N ξ
0 = {±e∗n : n ∈ N} ∪ {0}.

If N ξ
s has been defined for some s ∈ N ∪ {0}, then we define

N ξ
s+1 = N ξ

s ∪
{1

2
(f1 + · · · + fd) : fi ∈ N ξ

s , (i = 1, . . . , d),

supp f1 < supp f2 < · · · < supp fd and (min supp fi)
d
i=1 ∈ Sξ

}
.

Finally, set N ξ =
⋃∞

s=0 N ξ
s and the set N ξ is a norming set for T [Sξ,

1
2 ], i.e. we

have ‖x‖ξ = supx∗∈Nξ x∗(y) for all x ∈ T [Sξ,
1
2 ].

Now we prove Claim 1. First choose ` ∈ N such that 1/2` < η/2. We have

the following claim which follows immediately from Remark 1.1(v).

Claim 2: There exists a convex combination x =
∑

i∈F ani
eni

such that F ∈

Sξ`+1 ∩ Sξω and
∑

i∈G ai < η/2 for all G ∈ Sξ`.

Let x as in Claim 2. In order to estimate ‖x‖ξ from above, let x∗ ∈ N ξ. Let

L := {k ∈ N : |x∗(ek)| > 1/2`}. Then L ∈ Sξ`. Therefore

∣∣x∗(x)
∣∣ 6

∣∣(x∗|L)(x)
∣∣ +

∣∣(x∗|Lc)(x)
∣∣ 6

∑

k∈L

ak + 1/2` < η/2 + η/2 = η.

This finishes the proof of Claim 1 and the proof that

iξ ∈ SSξω(T [Sξω, 1/2], T [Sξ, 1/2]).
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Remark 2.8: Suppose that X and Y are Banach spaces, 1 6 ξ < ω1 and T ∈

SSξ(X, Y ). Let T̃ ∈ L(X ⊕ Y ) given by (x, y) 7→ (0, Tx), that is, T̃ = ( 0 0
T 0 ) .

Then T̃ ∈ SSξ(X ⊕ Y ). Conversely, if T̃ ∈ SSξ(X ⊕ Y ), then T ∈ SSξ(X, Y ).

The converse is obvious. To see the forward implication, pick a normalized

basic sequence (xn, yn) in X ⊕Y and ε > 0. Since (xn) is bounded, there exists

a subsequence (xni
) of (xi) which satisfies one of the options in Remark 2.3.

Set dk = xn2k+1
− xn2k

.

In case (i), dm → 0, so we can choose m such that ‖dm‖ < ε
C‖T‖ , where C

is the basis constant of (xn, yn). Put h = (xn2m+1 , yn2m+1)− (xn2m
, yn2m

), then

supph = {n2m, n2m+1} ∈ Sξ and

‖T̃ h‖ =
∥∥(0, T (xn2m+1 − xn2m

))
∥∥ 6 ‖T ‖‖dm‖ < ε/C 6 ε‖h‖.

In case (ii), since T ∈ SSξ(X, Y ) and (xn) is a basic sequence, we can find

F ∈ Sξ and nonzero scalars (ai)i∈F such that if w =
∑

i∈F aixni
, then ‖Tw‖ 6

ε‖w‖. Let h =
∑

i∈F ai(xni
, yni

), then

‖T̃ h‖ =
∥∥(0, Tw)

∥∥ 6 ε‖w‖ 6 ε‖h‖,

where, without loss of generality, we assume that
∥∥(0, y)

∥∥ = ‖y‖ for all y ∈ Y .

In case (iii), suppose that (dk) is a basic seminormalized sequence. Then

there exists G ∈ Sξ and nonzero scalars (ak)k∈G such that ‖Tw‖ 6 ε‖w‖ where

w =
∑

k∈G akdk. Set

h =
∑

k∈G

ak

(
(xn2k+1

, yn2k+1
) − (xn2k

, yn2k
)
)
.

Then ‖T̃ h‖ =
∥∥(0, Tw)

∥∥ 6 ε‖w‖ 6 ε‖h‖. It is left to show that supph ∈ Sξ.

For a set A ⊆ N define A×2 = ∪i∈A{2i, 2i + 1}. By transfinite induction it is

easy to see that if A ∈ Sξ, then A×2 ∈ Sξ. Thus F := G×2 ∈ Sξ. Therefore,

supph = {nk : k ∈ F} ∈ Sξ since Sξ is spreading Remark 1.1(i).

3. Schreier-spreading sequences and some equivalence relations

Recall the notion of spreading model. It is shown in [9, 10] that for every

seminormalized basic sequence (yi) in a Banach space and for every εn ↘ 0

there exists a subsequence (xi) of (yi) and a seminormalized basic sequence

(x̃i) (in another Banach space) such that for all n ∈ N, (ai)
n
i=1 ∈ [−1, 1]n and
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n 6 k1 < · · · < kn one has

(1)

∣∣∣∣

∥∥∥∥
n∑

i=1

aixki

∥∥∥∥ −

∥∥∥∥
n∑

i=1

aix̃i

∥∥∥∥

∣∣∣∣ < εn.

The sequence (x̃i) is called the spreading model of (xi) and it is a suppression-

1 unconditional basic sequence if (yi) is weakly null. We refer the reader to [9],

[10] and [6, I.3. Proposition 2] for more information about spreading models.

Spreading models of weakly null seminormalized basic sequences have been stud-

ied in [2], where for a Banach space X , the set of all spreading models of all

seminormalized weakly null basic sequences of X is denoted by SPw(X). Also

#SPw(X) denotes the cardinality of the quotient of SPw(X) with respect to

the equivalence relation ≈. In other words, #SPw(X) is the largest number of

pair-wise non-equivalent spreading models of weakly null seminormalized basic

sequences in X , ([2]).

We will use the following standard fact whose proof is left to the reader.

Lemma 3.1: Suppose that (xn) is a seminormalized basic sequence with a

spreading model (x̃n). Then, for every ε > 0 there exists n0 ∈ N such that
∥∥∥∥

n∑

i=1

aix̃i

∥∥∥∥
1+ε
≈

∥∥∥∥
n∑

i=1

aixki

∥∥∥∥

whenever n0 6 n 6 k1 < · · · < kn and a1, . . . , an ∈ R.

Motivated by the definition of spreading model we now define the notion of

a Schreier spreading sequence.

Definition 3.2: Let X be a Banach space. We say that a seminormalized basic

sequence (xn) in X is Schreier spreading, if there exists 1 6 C < ∞ such that

for every F = {f1, f2, . . . , fn}, G = {g1, g2, . . . , gn} ∈ S1 and scalars (ai)
n
i=1 we

have ∥∥∥∥
n∑

i=1

aixfi

∥∥∥∥
C
≈

∥∥∥∥
n∑

i=1

aixgi

∥∥∥∥.

Let SP1,w(X) denote the set of seminormalized weakly null basic sequences in

X which are Schreier spreading (here the index “1” reminds us of S1, and the

index “w” reminds us of weakly null).

It follows immediately from the results of Brunel and Sucheston [9, 10] and

Lemma 3.1 that:
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Remark 3.3: Every seminormalized basic sequence has a Schreier spreading sub-

sequence.

Now for 1 6 ξ < ω1 we define equivalence relations ≈ξ on SP1,w(X) as

follows.

Definition 3.4: Let X be a Banach space and 1 6 ξ < ω1. Define an equivalence

relation ≈ξ on SP1,w(X) as follows: if (xn) and (yn) are two Schreier spreading

sequences in X , we write (xn) ≈ξ (yn) if there exists 1 6 K < ∞ such that for

every F ∈ Sξ and scalars (ai)i∈F we have that

∥∥∥∥
∑

i∈F

aixi

∥∥∥∥
K
≈

∥∥∥∥
∑

i∈F

aiyi

∥∥∥∥.

Proposition 3.5: Suppose that (xn) is a Schreier spreading seminormalized

basic sequence in X .

(i) If (xnk
) is a subsequence of (xn), then (xnk

)k is Schreier spreading and

(xn) ≈1 (xnk
).

(ii) If (xn) ≈1 (yn) for another basic sequence (yn), then (yn) is Schreier

spreading.

(iii) There exists a normalized Schreier spreading sequence (yn) in X such that

(xn) ≈ (yn).

(iv) If X is a reflexive space with a basis (en), then there exists a seminormal-

ized block sequence (yn) of (en) such that (yn) is Schreier spreading and

(xn) ≈1 (yn).

Proof. (i) and (ii) are trivial.

(iii) By standard perturbation arguments, one can find c0 ∈
[
infn‖xn‖,

supn‖xn‖
]

and a subsequence (xnk
) of (xn) such that

(
xnk

‖xnk
‖

)
≈

(
xnk

c0

)
.

Hence, if yk =
xnk

‖xnk
‖ , then (yk) is normalized basic Schreier spreading and

(yk) ≈ (xnk
) ≈1 (xk).

(iv) Since X is reflexive, (xn) is weakly null. A standard gliding hump argu-

ment yields a subsequence (xnk
) of (xk) and a block sequence (yk) of (ek) such

that (xnk
) ≈ (yk) which obviously implies the result since (xk) ≈1 (xnk

).
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Corollary 3.6: For every Banach space X we have

#SPw(X) = #
(
SP1,w(X)/≈1

)
6 #

(
SP1,w(X)/≈

)
.

Proof. The inequality #
(
SP1,w(X)/≈1

)
6 #

(
SP1,w(X)/≈

)
is obvious. To

show that #SPw(X) = #
(
SP1,w(X)/≈1

)
we define a bijection Φ from the

set of ≈-equivalence classes of SPw(X) to the set of ≈1-equivalence classes of

SP1,w(X). Suppose that (x̃n) ∈ SPw(X) is the spreading model of a weakly

null seminormalized basic sequence (xn). Then by Lemma 3.1 there exists

n0 ∈ N such that (xn)n>n0 ∈ SP1,w(X) and (xn)n>n0 ≈1 (x̃n)n∈N. Define

Φ:
(
(x̃n)/≈

)
7→

(
(xn)n>n0/≈1

)
. Obviously Φ is well-defined and one-to-one. It

follows from Remark 3.3 and Proposition 3.5(i) that Φ is onto.

4. Compact products

V. D. Milman [20] proved that the product of any two strictly singular operators

in Lp[0, 1] (1 6 p < ∞) or C[0, 1] is compact. In this section we extend the

techniques used by Milman to spaces with finite #
(
SP1,w(X)/≈ξ

)
.

Theorem 4.1: Let X be a Banach space, 1 6 ξ < ω1 and n ∈ N ∪ {0}.

If #
(
SP1,w(X)/ ≈ξ

)
= n, S ∈ SS(X) and T1, . . . , Tn ∈ SSξ(X), then

TnTn−1 . . . T1S is compact. Moreover, if `1 does not isomorphically embed in

X then TnTn−1 . . . T1 is compact.

Furthermore, if #
(
SP1,w(X)/ ≈

)
= n and T1, . . . , Tn+1 ∈ SS(X), then

Tn+1Tn . . . T1 is compact. Moreover, if `1 does not isomorphically embed in

X , then TnTn−1 . . . T1 is compact.

Proof. For simplicity, we present the proof in the case n = 2. However, it should

be clear to the reader how to extend the proof to n > 2 or n = 1. The case

n = 0 will be treated at the end. Thus, for the sake of contradiction, suppose

that the conclusion of the theorem fails, i.e., T2T1S is not compact or `1 6↪→ X

and T2T1 is not compact.

Claim: There exists a seminormalized weakly Cauchy sequence (un) such that

(T2T1un) has no convergent subsequences.

If `1 6↪→ X and T2T1 is not compact, then one can find a normalized sequence

(un) in X such that (T2T1un) has no convergent subsequences. By Rosenthal’s

Theorem [25] we can assume that (un) is weakly Cauchy.
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Suppose now that T2T1S is not compact. Again, find a normalized sequence

(vn) in X such that (T2T1Svn) has no convergent subsequences. Put un = Svn.

Note that (T2T1un) has no convergent subsequences, so that (un) is seminor-

malized. Apply Rosenthal’s Theorem to (vn). If (vn) has a weakly Cauchy

subsequence, then, by passing to this subsequence, (un) is also weakly Cauchy,

and we are done. Suppose not, then, by passing to a subsequence and relabeling,

we can assume that (vn) is equivalent to the unit vector basis of `1. Now apply

Rosenthal’s Theorem to (un). If (un) has a subsequence equivalent to the unit

vector basis of `1, then, after passing to this subsequence and relabeling, we

would get that the restriction of S to [vn]∞n=1 is equivalent to an isomorphism

on `1, which contradicts S being strictly singular. Therefore, (un) must have a

weakly Cauchy subsequence. This completes the proof of the claim.

Since (T2T1un) has no convergent subsequences, by passing to a subsequence

and relabeling, we can assume that (T2T1un) is ε-separated for some ε > 0. Thus

the sequences (xn), (yn) and (zn) are seminormalized, where xn := un+1 − un,

yn := T1xn and zn := T2T1xn. Since (un) is weakly Cauchy, it follows that (xn),

(yn) and (zn) are weakly null. By using Corollary 1 of [7] and Remark 3.3, pass

to subsequences and relabel in order to assume that (xn), (yn) and (zn) are

basic and Schreier spreading.

Since T1(xn) = yn for all n and T1 ∈ SSξ(X) we have that (xn) 6≈ξ (yn).

Similarly, since T2(yn) = zn for all n and T2 ∈ SSξ(X) we obtain that (yn) 6≈ξ

(zn). Finally by Proposition 2.4 (iv), we have that T2T1 ∈ SSξ(X), so that

(xn) 6≈ξ (zn). Thus #
(
SP1,w(X)/≈ξ

)
> 3, which is a contradiction.

For the “furthermore” statement, if #
(
SP1,w(X)/ ≈

)
= 2, then we can

modify the above proof to merely assume that T1, T2 ∈ SS(X). Notice that

since T1(xn) = yn for all n and T1 ∈ SS(X) we have that (xn) 6≈ (yn). In-

deed, otherwise T1 induces the restriction operator from [(xn)] to [(yn)] via∑∞
i=1 anxn 7→

∑∞
i=1 anyn. This restriction is one-to-one since (yn) is a basic se-

quence, and onto since (xn) ≈ (yn). Hence, the restriction of T to [xn] would be

an isomorphism, contradiction. Similarly, (yn) 6≈ (zn) and (xn) 6≈ (zn). Thus

#
(
SP1,w(X)/≈

)
> 3 which is a contradiction.

The statement as well as the proof of this result for n = 0 should

be given special attention. The assumptions #
(
SP1,w(X)/ ≈ξ

)
= 0 or

#
(
SP1,w(X)/≈

)
= 0, combined with Remark 3.3, simply mean that there

is no seminormalized weakly null basic sequence in X . The conclusion of the

statement if n = 0 simply means that K(X) = SS(X). In order to verify the
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result, if S ∈ SS(X)\K(X), then there exists a normalized sequence (vn) such

that (Svn) has no convergent subsequence. By Remark 2.3 there is a subse-

quence (vnk
) such that both (vnk

) and (Svnk
) are equivalent to the unit vector

basis of `1. This contradicts the assumption that S ∈ SS(X).

5. Applications of Theorem 4.1

In this section we give applications and corollaries of Theorem 4.1.

5.1. The first application was obtained by V. D. Milman [20]. From [15] we

have that for 2 < p < ∞, every weakly null seminormalized sequence in Lp[0, 1]

has a subsequence which is equivalent to the unit vector basis of `p or `2. Thus

#
(
SP1,w(Lp[0, 1])/≈

)
= 2. Moreover, `1 6↪→ Lp[0, 1]. Thus, by Theorem 4.1,

the product of any two strictly singular operators on Lp[0, 1] (2 < p < ∞) is

compact.

5.2. An infinite dimensional subspace Y of a Banach space X is said to be

partially complemented if there exists an infinite dimensional subspace Z ⊂

X such that Y ∩Z = 0 and Y +Z is closed. In general, the adjoint of a strictly

singular operator does not have to be strictly singular. However, V. D. Milman

proved in [20] that if X∗ is separable and every infinite dimensional subspace of

X is partially complemented, then the adjoint of every strictly singular operator

defined on X is again strictly singular. Milman then used this fact to show that

the product of any two strictly singular operators on Lp[0, 1] (1 < p < 2) is

compact. This can be immediately generalized to the following dual version of

Theorem 4.1.

Corollary 5.1: Suppose that X is a Banach space such that X∗ is separable

and every infinite dimensional subspace of X is partially complemented. If(
SP1,w(X∗)/≈

)
= n, and T1, . . . , Tn+1 ∈ SS(X), then Tn+1Tn . . . T1 is compact.

Moreover, if `1 does not isomorphically embed in X∗, then TnTn−1 . . . T1 is

compact.

5.3. Let X be a reflexive Banach space with a basis (ei) such that for some

1 6 ξ < ω1 there exists 0 < δ < 1 such that

(2)

∥∥∥∥
n∑

i=1

xi

∥∥∥∥ > δ
n∑

i=1

‖xi‖
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for any finite block sequence (xi)
n
i=1 with (min suppxi)

n
i=1 ∈ Sξ. Fix m ∈ N

and by Remark 1.1(iv) let N = (ni) be a subsequence of N such that Sξm(N) ⊆

[Sξ]
m. Thus for any block sequence (xn) in X and any F ∈ Sξm we have

(3)

∥∥∥∥
∑

i∈F

xni

∥∥∥∥ > δm
∑

i∈F

‖xni
‖.

Hence, if (xni
) is seminormalized, then (xni

) is ≈ξm-equivalent to the unit

vector basis of `1. Therefore, the proof of Proposition 3.5(iv) gives that if

(xn) is any Schreier spreading sequence in X , then (xn) is ≈ξm-equivalent to

the unit vector basis of `1. Since `1 6↪→ X , by Theorem 4.1 we obtain that

SSξm(X) = K(X). Banach spaces that satisfy (2) are for example Tsirelson

type spaces T [δ,Sξ] or more general mixed Tsirelson spaces T
[(

1
mi

,Sni

)
i∈N

]
,

or similar type of hereditarily indecomposable Banach spaces constructed and

studied in [3].

5.4. Let R be the Banach space, constructed by C. J. Read in [23]. It is shown

in [23] that R has precisely two symmetric bases, (which shall be denoted by

(eY
m)n and (eZ

n )n), up to equivalence.

Proposition 5.2: If (yn) is a Schreier spreading sequence in R, (not neces-

sarily symmetric and not necessarily a basis for the whole space), then either

(yn) ≈1 (eY
n ) or (yn) ≈1 (eZ

n ) or (yn) is ≈1-equivalent to the unit vector basis

of `1.

Proof. In [23, page 38, lines 14 and 17] two norms ‖·‖Y and ‖·‖Z are constructed

on c00 so that the standard basis (en) of c00 is symmetric with respect to either

norm [23, page 38, line -2]. Then Y denotes the completion of (c00, ‖·‖Y ) and

Z denotes the completion of (c00, ‖·‖Z). It is proved in [23, Lemma 2, page 39]

that Y and Z are isomorphic (and we denote them by R). Thus if (eY
n )n and

(eZ
n )n denotes the standard basis of c00 in Y and Z respectively, then (eY

n )n and

(eZ
n )n are normalized symmetric bases for R. Also, (eY

n )n and (eZ
n )n are not

equivalent by the estimates of [23, page 39, lines 7 and 9]. From page 40, line 13

to the end of Section 6 (page 47) it is shown in [23] that if (yn) is a symmetric

‖·‖Y -normalized block basic sequence of (eY
n )n in R, then (yn) is equivalent to

(eY
n )n, or (eZ

n )n, or the unit vector basis of `1. (Then, since R is not isomorphic

to `1, R has exactly two symmetric bases.) A closer examination of these pages
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will reveal that it is actually shown that if (yn) is any ‖·‖Y -normalized block

sequence in R, then one of the following two cases is satisfied:

Case 1: (yn) has a subsequence (yni
)i which is equivalent to the unit vector

basis of `1 (see [23, page 41, lines 5–7]). Thus if (yn) is Schreier spreading,

then (yn) is ≈1-equivalent to the unit vector basis of `1. Moreover, if (yn) is

symmetric ([23, page 41, line 9]), then (yn) is equivalent to the unit vector basis

of `1.

Case 2: limr→∞

∥∥∑
j λjyj+r

∥∥
Y

is equivalent to either
∥∥∑

j λje
Y
j

∥∥
Y

or∥∥∑
j λje

Z
j

∥∥
Z

for every (λj) ∈ c00.

Indeed,
∥∥∑

j λjyj+r

∥∥
Y

is the left hand side of the displayed formula [23, page

47, line 7] by virtue of the notation [23, page 40, line 4]. Thus, by [23, page 47,

line 7], limr→∞

∥∥∑
j λjyj+r

∥∥
Y

is denoted by |||λ||| in [23, page 47, line 10], or

by p(λ, β) in [23, Section 7]. It is concluded in [23, page 50, line 3] that |||λ|||

is equivalent to either
∥∥∑

j λje
Y
j

∥∥
Y

or
∥∥∑

j λje
Z
j

∥∥
Z
.

Thus, in Case 2, if (yn) is Schreier spreading, then (yn) ≈1 (eY
n ), or

(yn) ≈1 (eZ
n ). Moreover, if (yn) is symmetric [23, page 47, line 9], then (yn) is

equivalent to (eY
n ) or (eZ

n ).

By combining Proposition 5.2 and Theorem 4.1, we obtain that the product

of any three operators in SS1(R) is compact.

5.5. Theorem 4.1 may also be used to provide invariant subspaces of operators.

A well-known theorem of Lomonosov [18] asserts that if T is an operator on a

Banach space such that T commutes with a non-zero compact operator, then

T has a (proper non-trivial) invariant subspace. Moreover, if the Banach space

is over complex scalars and T is not a multiple of the identity, then there exists

a proper non-trivial subspace which is hyperinvariant for T . When the Banach

space is over real scalars, one can find a hyperinvariant subspace for T if T does

not satisfy an irreducible quadratic equation, see [14, 27].

Proposition 5.3: Suppose that X is a Banach space and 1 6 ξ < ω1.

(i) If #
(
SP1,w(X)/≈ξ

)
is finite, then every operator S ∈ SSξ(X) \ {0} has a

non-trivial hyperinvariant subspace.

(ii) If #
(
SP1,w(X)/≈

)
is finite, then every operator S ∈ SS(X) \ {0} has a

non-trivial hyperinvariant subspace.
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Proof. Suppose that either #
(
SP1,w(X)/≈ξ

)
is finite and S ∈ SSξ(X) \ {0},

or #
(
SP1,w(X)/≈

)
is finite and S ∈ SS(X) \ {0}. If S has eigenvalues, then

every eigenspace is a hyperinvariant subspace and we are done. Suppose S

has no eigenvalues. So we can assume that S is quasinilpotent with trivial

kernel. It follows that S does not satisfy any real-irreducible quadratic equation.

Theorem 4.1 implies that Sm is compact for some m. Also, Sm is non-zero as

otherwise zero would be an eigenvalue of S. Since S commutes with Sm, it

follows that S has a non-trivial hyperinvariant subspace.

A similar reasoning shows that if, under the hypotheses of Proposition 5.3, T

commutes with S then T commutes with the compact operator Sm. Therefore,

if Sm 6= 0 and either X is a complex Banach space or X is real and T does

not satisfy any irreducible quadratic equation, then T has a hyperinvariant

subspace.

Note that Read [24] constructed an example of a strictly singular operator

with no invariant subspaces. A further application of Proposition 5.3 is Corol-

lary 6.12.

6. Hereditarily indecomposable Banach spaces

In [13] an infinite dimensional Banach space was defined to be hereditarily

indecomposable (HI) if for every two infinite dimensional subspaces Y and

Z of X with Y ∩Z = {0} the projection from Y +Z to Y defined by y + z 7→ y

(for y ∈ Y and z ∈ Z) is not bounded. It is is observed in [13] that this

is equivalent to the fact that for every two infinite dimensional subspaces Y

and Z of X and for every ε > 0 there exists a unit vector y ∈ Y such that

dist
(
y, Z

)
< ε. This motivates us to introduce the following definition.

Definition 6.1: Let 1 6 ξ < ω1. We say that a Banach space X is Sξ-hereditary

indecomposable (HIξ) if for every ε > 0, infinite-dimensional subspace Y ⊆ X

and basic sequence (xn) in X there exist an index set F ∈ Sξ and a unit vector

y ∈ Y such that the dist
(
y, [xi]i∈F

)
< ε.

It is obvious that if 1 6 ξ < ω1 and X is HIξ, then X is HI. Similarly to

Proposition 2.4(ii), if X is HIξ and ξ < ζ then X is HIζ .

Remark 6.2: Let X be a Banach space and 1 6 ξ < ω1.
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(i) X is HIξ if and only if for every ε > 0, infinite-dimensional subspace Y ⊆ X

and normalized basic sequence (xn) in X there exist a subsequence (xnk
),

F ∈ Sξ and unit vector y ∈ Y such that dist
(
y, [xnk

]k∈F

)
< ε.

(ii) If X is a reflexive Banach space with a basis (en), then X is HIξ if and

only if for every ε > 0, infinite-dimensional block subspace Y ⊆ X and

normalized block sequence (yn) of (en), there exists G ∈ Sξ and unit vector

y ∈ Y such that dist
(
y, [yi]i∈G

)
< ε.

The proof of (i) is trivial. For the proof of (ii) notice that if X is a reflexive

Banach space with a basis (en), Y is an infinite dimensional subspace of X and

(xn) is a basic sequence in X , then ( xn

‖xn‖ ) is weakly null thus by passing to

a subsequence and relabeling we can assume that ( xn

‖xn‖ ) is “near” a block se-

quence of (en) [7]. Similarly, Y contains an infinite dimensional block subspace.

The details are left to the reader.

Example 6.3: The HI space constructed by Gowers and Maurey [13], which will

be denoted by GM , is an HI3 space.

Indeed, we outline the proof from [13] that GM is HI and we indicate that the

proof actually shows that GM is HI3. An important building block of the proof

is the notion of rapidly increasing sequence vectors (denoted by RIS vectors).

Before defining the RIS vectors, we need to back up and define the `n
1+ average

with constant 1 + ε (for n ∈ N and ε > 0). Let n ∈ N and ε > 0. We say that

a vector y ∈ GM is an `n
1+ average with constant 1 + ε if ‖y‖ = 1 and y can

be written as y = x1 + · · · + xn where x1 < · · · < xn, all not equal to zero, and

‖xi‖ 6 (1 + ε)n−1 for every i. It is shown in [13, Lemma 3] that if U is any

infinite dimensional block subspace of GM , ε > 0 and n ∈ N, then there exists

y ∈ U which is an `n
1+ average with constant 1 + ε. In fact, the proof shows

that (un) is a block basis of U then there exists F ∈ S1 and y ∈ [un]n∈F which

is an `n
1+ average with constant 1 + ε.

For N ∈ N and ε > 0 a vector z ∈ GM is called an RIS vector of length N

and constant 1+ε if z can be written as z = (y1+· · ·+yN )/‖y1+· · ·+yN‖ where

y1 < · · · < yN and each yk is an `nk

1+ average with constant 1+ε and the positive

integers (nk)N
k=1 are defined inductively to satisfy n1 > 4(1 + ε)2N/ε′

/ε′ where

ε′ = min(ε, 1), and
√

log2(nk+1 + 1) > 2# supp yk/ε′, where supp y stands for

the support of the vector y relative to the standard basis of GM . Thus if

N ∈ N, ε > 0 and U is an infinite dimensional block subspace of GM spanned
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by a block sequence (un), then there exists G ∈ S2 and z ∈ [un]N∈G which is

an RIS vector of length N and constant 1 + ε.

Then the idea of the proof that GM is HI is then the following ([13, page

868]): Given any k ∈ N and two block subspaces Y and Z of GM , spanned

by block sequences (yn) and (zn) respectively, let x1 ∈ Y be an RIS of length

M1 := j2k and constant 41/40 (the sequence (jn) is an increasing sequence of

integers which is used at the definition of the space GM [13, pages 862 and 863]).

The vector x1 determines then a positive integer M2. Then a vector x2 is chosen

in Z such that x1 < x2 and x2 is an RIS vector of length M2 and constant 41/40.

The vectors x1 and x2 determine a positive integer M3. Then a vector x2 is

chosen in Y such that x2 < x3 and x3 is an RIS vector of length M3 and constant

41/40. Continue similarly choosing total of k block vectors xi alternatingly from

Y and Z. Let y =
∑

x2i−1/‖
∑

x2i−1‖ ∈ Y and z =
∑

x2i/‖
∑

x2i‖ ∈ Z. Then

it is shown that ‖y + z‖ > (1/3)
√

log2(k + 1)‖y − z‖. Since k is arbitrary, this

shows that GM is HI. By the remarks about the support of an RIS vector,

one can make sure that there exist H1, H2 ∈ S3 such that y ∈ [yn]n∈H1 and

z ∈ [zn]n∈H2 . This proves that GM is an HI3 space. Proposition 6.11 implies

that if GM is considered as a complex Banach space then every operator on

GM can be written in the form λ + S where λ ∈ C and S ∈ SS3(GM).

Example 6.4: The HI space constructed by S. A. Argyros and I. Deliyanni [3],

which will be denoted by AD, is an HIω3 space.

This can be done similarly to the Example 6.3 by closely examining the proof

of [3] showing that AD is an HI space.

Next we use Desriptive Set Theory in order to prove the following result

which signifies the importance of separable Sξ-HI Banach spaces and Sξ-strictly

singular operators defined on separable Banach spaces.

Theorem 6.5: Let X be a separable Banach space, Y be a Banach space and

S ∈ L(X, Y ). Then the following hold.

(a) X is HI if and only if X is HIξ for some ξ < ω1.

(b) S is strictly singular if and only if S is Sξ-strictly singular for some ξ < ω1.

For the proof of Theorem 6.5 we need some results from Descriptive Set

Theory which we briefly recall.
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Trees: Let N<N by the set of all finite sequences of natural numbers. By

[N]<N we shall denote the subset of N<N consisting of all strictly increasing

finite sequences. We view N<N as a tree equipped with the (strict) partial order

@ of extension. A tree T on N is a downwards closed subset of N<N. By Tr we

denote the set of all trees on N. Thus

T ∈ Tr ⇔ ∀s, t ∈ N<N (s @ t and t ∈ T ⇒ s ∈ T ).

Notice that [N]<N belongs to Tr.

By identifying every T ∈ Tr with its characteristic function (i.e. an element

of 2N<N

), it is easy to see that the set Tr becomes a closed subset of 2N<N

. For

every σ ∈ NN and every n ∈ N we let σ|n =
(
σ(1), . . . , σ(n)

)
∈ N<N. A tree

T ∈ Tr is said to be well-founded if for every σ ∈ NN there exists n ∈ N such

that σ|n /∈ T . By WF we denote the subset of Tr consisting of all well-founded

trees.

For every T ∈ Tr, let T ′ =
{
s ∈ T : ∃t ∈ T with s @ t

}
. Observe that

T ′ ∈ Tr. By transfinite recursion, for every T ∈ Tr we define (T (ξ))ξ<ω1 as

follows. We set T (0) = T , T (ξ+1) =
(
T (ξ)

)′
and T (λ) =

⋂
ξ<λ T (ξ) if λ is limit.

Notice that T ∈ WF if and only if the sequence (T (ξ))ξ<ω1 is eventually empty.

For every T ∈ WF, the order o(T ) of T is the least countable ordinal ξ such

that T (ξ) = ∅. We will need the following Boundedness Principle for WF, [16,

Theorem 31.2].

Theorem 6.6: If A is an analytic subset of WF, then sup{o(T ) : T ∈ A} < ω1.

If S, T ∈ Tr, then a map φ : S → T is said to be monotone if for every

s1, s2 ∈ S with s1 @ s2 we have φ(s1) @ φ(s2). Notice that if S, T are well-

founded trees and there exists a monotone map φ : S → T , then o(S) 6 o(T ).

Also observe that for every ξ < ω1 the Schreier family Sξ is a well-founded tree

and o(Sξ) > ξ.

Standard Borel spaces: Let (X, Σ) be a measurable space, i.e. X is a set

and Σ is a σ-algebra on X . The pair (X, Σ) is said to be a standard Borel

space if there exists a Polish topology τ on X such that the Borel σ-algebra of

(X, τ) coincides with Σ. Invoking the classical fact that for every Borel subset

B of a Polish space (X, τ) there exists a finer Polish topology τ ′ on X making

B clopen and having the same Borel set as (X, τ) (see [16, Theorem 13.1]), we
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see that if (X, Σ) is a standard Borel space and B ∈ Σ, then B equipped with

the relative σ-algebra is a standard Borel space too.

Let X be a Polish space and denote by F (X) the set of all closed subsets

of X . We endow F (X) with the σ-algebra Σ generated by the sets

{
F ∈ F (X) : F ∩ U 6= ∅

}
,

where U ranges over all nonempty open subsets of X . The measurable space(
F (X), Σ

)
is called the Effros-Borel space of X . It is well-known that the Effros

Borel space is a standard Borel space, [16, Theorem 12.6].

Now let X be a separable Banach space. Denote by Subs(X) the set of all

infinite-dimensional subspaces of X . The set Subs(X) is a Borel subset of F (X),

and so, a standard Borel space on its own right. To see this, notice that by

[16, page 79, line+6] the set A of all closed linear subspaces (finite or infinite

dimensional) of X is Borel in F (X). Moreover, by [16, Exercise 12.20], the set

F of all finite-dimensional subspaces of X is also a Borel subset of F (X). As

Subs(X) = A\F , we conclude that Subs(X) is Borel. We will need the following

fact, which was isolated explicitly in [4]. Its proof follows by a straightforward

application of the Kuratowski–Ryll-Nardzewski selection theorem, [16, Theorem

12.13].

Proposition 6.7: Let X be a separable Banach space. There exists a sequence

Sl : Subs(X) → X , l ∈ N, of Borel maps such that for every subspace Y of X

the sequence
(
Sl(Y )

)
is in the sphere SY of Y and, moreover, it is norm dense

in SY .

For more background material on Subs(X) we refer to [4], [8] and [16]. We

are ready to proceed to the proof of Theorem 6.5.

Proof of Theorem 6.5. (a) Clearly we only need to show that if X is HI, then

X is HIξ for some ξ < ω1. So, fix a separable HI Banach space X . Let

B =
{
(xn) ∈ XN : (xn) is a normalized basic sequence in X

}
.

We claim that B is Fσ in XN, the later equipped with the product topology.

To see this, for every k ∈ N let Bk be the set of all normalized basic sequences

(xn) with basis constant less or equal to k. It is easy to see that Bk is closed in

XN. As B is the union over all k ∈ N of Bk, this shows that B is Fσ . Since X

is separable, XN is Polish. Thus B is a standard Borel space.
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Let Sl : Subs(X) → X , l ∈ N, be the sequence of Borel maps obtained by

Proposition 6.7. For every m ∈ N, every (xn) ∈ B and every Y ∈ Subs(X) we

define a tree T = T (m, (xn), Y ) ∈ Tr to be the set of all t = (l1 < · · · < lk) ∈

[N]<N such that

∥∥∥Sl(Y ) −

k∑

i=1

aixli

∥∥∥ >
1

m
for any a1, . . . , ak in Q and any l in N.

For every m ∈ N consider the map Φm : B × Subs(X) → Tr defined by

Φm

(
(xn), Y

)
= T (m, (xn), Y ).

Claim 1: The following hold.

(i) For every m ∈ N the map Φm is Borel.

(ii) For every m ∈ N, every (xn) ∈ B and every Y ∈ Subs(X) the tree

T (m, (xn), Y ) is well-founded.

(iii) Let ζ < ω1 and assume that X is not HIζ . Then there exist m ∈ N,

(xn) ∈ B and Y ∈ Subs(X) such that o(T (m, (xn), Y )) > ζ.

Proof of the claim. (i) For those readers familiar with descriptive set theoretic

computations, this part of the claim is a straightforward consequence of the defi-

nition of the tree T (m, (xn), Y ). However, for the convenience of the readers not

familiar with these computations, we shall describe a more detailed argument.

Fix m ∈ N. For every t ∈ N<N let Ut = {T ∈ Tr: t ∈ T }. As the topology on

Tr is the pointwise one, we see that the family {Ut : t ∈ N<N} forms a sub-basis

of the topology on Tr. Thus, it is enough to show that for every t ∈ N<N the

set

Φ−1
m (Ut) =

{(
(xn), Y

)
∈ B × Subs(X) : t ∈ T (m, (xn), Y )

}

is Borel. So, let t ∈ N<N. If t /∈ [N]<N, then Φ−1
m (Ut) = ∅. Hence, we may

assume that t = (l1 < · · · < lk) ∈ [N]<N.

For every j ∈ N the map πj : B × Subs(X) → X defined by πj

(
(xn), Y

)
= xj

is clearly Borel. For every a = (ai)
k
i=1 ∈ Qk and every l ∈ N consider the map

Ha,l : B × Subs(X) → R defined by

Ha,l

(
(xn), Y

)
=

∥∥∥∥Sl(Y ) −
k∑

i=1

aixli

∥∥∥∥ =

∥∥∥∥Sl(Y ) −
k∑

i=1

aiπli

(
(xn), Y

)∥∥∥∥.

Invoking the above remarks, the Borelness of the map Sl and the continu-

ity of the norm, we see that the map Ha,l is Borel. Thus, setting Aa,l,m =
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H−1
a,l

(
[ 1
m , +∞)

)
we get that Aa,l,m is a Borel subset of B × Subs(X) for every

a ∈ Qk, every l ∈ N and every m ∈ N. It follows from

Φ−1
m (Ut) =

⋂

a∈Qk

⋂

l∈N

Aa,l,m

that Φ−1
m (Ut) is a Borel subset of B × Subs(X), as desired.

(ii) Assume, towards a contradiction, that there exist m ∈ N, (xn) ∈ B and

Y ∈ Subs(X) such that the tree T (m, (xn), Y ) is not well-founded. Thus, there

exists σ ∈ NN such that σ|k ∈ T (m, (xn), Y ) for all k ∈ N. Set nk = σ(k).

Notice that nk < nk+1 for every k ∈ N. Let Z = [xnk
]. As the sequence(

Sl(Y )
)

is norm dense in SY , we see that dist(y, Z) > 1
m for every y ∈ SY .

Thus X is not HI, a contradiction.

(iii) Let ζ < ω1 such that X is not HIζ . By definition, there exist ε > 0,

(xn) ∈ B and Y ∈ Subs(X) such that for every y ∈ SY and every F ∈ Sζ

we have dist(y, [xn]n∈F ) > ε. Let m ∈ N with 1
m < ε. It follows that for

every F = {l1 < · · · < lk} ∈ Sζ we have F ∈ T (m, (xn), Y ). Hence, the

identity map Id : Sζ → T (m, (xn), Y ) is a well-defined monotone map, and so

o
(
T (m, (xn), Y )

)
> o(Sζ) > ζ. The claim is proved.

We set

A =
⋃

m∈N

Φm

(
B × Subs(X)

)

=
{
T (m, (xn), Y ) : m ∈ N, (xn) ∈ B and Y ∈ Subs(X)

}
.

By Claim 1(i), we see that A is an analytic subset of Tr. By Claim 1(ii), we get

that A ⊆ WF. Hence, by Theorem 6.6, there exists a countable ordinal ξ such

that

sup{o(T ) : T ∈ A} < ξ.

Finally, by Claim 1(iii), we conclude that X is HIξ, as desired.

(b) The proof is similar to that of part (a). Again it is enough to show that if

X is a separable Banach space, Y is a Banach space and S ∈ L(X, Y ) is strictly

singular, then S is Sξ-strictly singular for some ξ < ω1. As in the previous part,

let B be the Fσ subset of XN consisting of all normalized basic sequences in X .

For every m ∈ N and every (xn) ∈ B we define a tree T = T
(
m, (xn)

)
∈ Tr to
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be the set of all t = (l1 < · · · < lk) ∈ [N]<N such that

∥∥∥∥S

( k∑

i=1

aixli

)∥∥∥∥ >
1

m

∥∥∥∥
k∑

i=1

aixli

∥∥∥∥ for any a1, . . . , ak in Q.

For every m ∈ N consider the map Ψm : B → Tr defined by

Ψm

(
(xn)

)
= T

(
m, (xn)

)
.

We have the following analogue of Claim 1. The proof is identical and it is left

to the reader.

Claim 2: The following hold.

(i) For every m ∈ N the map Ψm is Borel.

(ii) For every m ∈ N and every (xn) ∈ B the tree T
(
m, (xn)

)
is well-founded.

(iii) Let ζ < ω1 and assume that S is not Sζ-strictly singular. Then there exist

m ∈ N and (xn) ∈ B such that o
(
T (m, (xn))

)
> ζ.

By parts (i) and (ii) of Claim 2 and by Theorem 6.6, there exists a countable

ordinal ξ such that

sup{o
(
T (m, (xn))

)
: m ∈ N and (xn) ∈ B} < ξ.

Hence, by Claim 2(iii), we conclude that S is Sξ-strictly singular. The proof of

the theorem is completed.

Remark 6.8: We notice that part (b) of Theorem 6.5 is not valid if both X and

Y are non-separable. To see this, for every ξ < ω1 let Xξ and Yξ be separable

Banach spaces and Tξ ∈ L(Xξ, Yξ) be a strictly singular operator which is not

Sξ-strictly singular and with ‖Tξ‖ = 1. We let

X =

( ∑

ξ<ω1

⊕Xξ

)

`1

and Y =

( ∑

ξ<ω1

⊕Yξ

)

`2

.

One can easily “glue” the sequence (Tξ)ξ<ω1 to produce a strictly singular op-

erator T ∈ L(X, Y ) which is not Sξ-strictly singular for any ξ < ω1.

In their celebrated paper [13], W. T. Gowers and B. Maurey showed that if

X is a complex HI Banach space, then every operator T ∈ L(X) can be written

as a strictly singular perturbation of a scalar operator. The proof is based on

the definition of the infinite singular values of an operator and an important

fact that is proved about them. We recall the definition: Let X be a complex
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Banach space, T ∈ L(X). We say that T is infinitely singular if no restriction

of T to a subspace of finite codimension is an isomorphism.

Lemma 6.9 ([13]): If X is an infinite dimensional Banach space over C and

T ∈ L(X) then there exists λ ∈ C such that T − λI is infinitely singular.

Using this fact Gowers and Maurey proved the following.

Theorem 6.10 ([13]): Every operator on a complex HI space is of the form

λI + S where λ ∈ C and S is strictly singular.

We use Lemma 6.9 in the proof of the following result which is analogous to

Theorem 6.10.

Proposition 6.11: If 1 6 ξ < ω1 and X is a complex HIξ space, then every

T ∈ L(X) can be written as T = λI + S where λ ∈ C and S ∈ SSξ(X).

Proof. Let X be a complex HIξ space and T ∈ L(X). Assume that T is not

a scalar multiple of the identity, else there is nothing to prove. By Lemma 6.9

there exists λ ∈ C such that S = T − λI is infinitely singular. We will show

that S ∈ SSξ(X). Let (xn) be a normalized basic sequence in X and ε > 0.

Proposition 2.c.4 of [17] asserts that there is an infinite dimensional subspace Y

of X such that ‖S|Y ‖ < ε/3. Since X is HIξ there exists F ∈ Sξ, a unit vector

y ∈ Y and a vector x ∈ [xn]n∈F such that ‖y − x‖ < ε/(3‖S‖+ ε). It can then

be easily checked that ‖x/(‖x‖) − x‖ < ε/(3‖S‖). Hence
∥∥Sx/‖x‖

∥∥ 6 ‖Sy‖ + ‖S(y − x)‖ +
∥∥S

(
x − x/‖x‖

)∥∥

6 ε/3 + ‖S‖ε/(3‖S‖) + ‖S‖
∥∥x − x/‖x‖

∥∥

< ε.

Since x
‖x‖ ∈ [xn]n∈F , we obtain that S ∈ SSξ(X), which finishes the proof.

Propositions 6.11 and 5.3 yield the following result.

Corollary 6.12: If X is an infinite dimensional complex HIξ Banach space

for some 1 6 ξ < ω1, such that #
(
SP1,w(X)/≈ξ

)
< ∞, then every operator

T ∈ L(X) which is not a multiple of the identity has a non-trivial hyperinvariant

subspace.

Question: Does there exist any Banach space which satisfies the assumptions

of Corollary 6.12?
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Finally, we examine operators originating from a subspace of an HIξ Banach

space X and taking values in X . The next result will be important in their

study:

Theorem 6.13: If 1 6 ξ < ω1 and X is a HIξ Banach space, then SSξ(X, Y ) =

SS(X, Y ) for every Banach space Y .

Proof. It follows from Proposition 2.4(i) that SSξ(X, Y ) ⊆ SS(X, Y ). Let

T ∈ SS(X, Y ), (xn) a basic sequence in X , and 0 < ε < 1. Choose δ > 0 such

that δ(1+‖T‖)
1−δ < ε. By Proposition 2.c.4 of [17] there is an infinite dimensional

subspace Z ⊆ X such that ‖T|Z‖ < δ. Since X is HIξ, there exists F ∈ Sξ and

vectors x ∈ [xn]n∈F and z ∈ Z such that ‖z‖ = 1 and ‖x − z‖ < δ. It follows

that ‖x‖ > 1 − δ and

‖Tx‖ 6 ‖Tz‖+ ‖T ‖‖x− z‖ < δ
(
1 + ‖T ‖

)
< ε‖x‖.

We now extend the following result of V. Ferenczi (which in turn is a gener-

alization of Theorem 6.10).

Theorem 6.14 ([12]): If X is a complex HI Banach space, Y is an infinite

dimensional subspace of X and T ∈ L(Y, X), then there exists λ ∈ C and

S ∈ SS(Y, X) such that T = λiY,X + S where iY,X : Y → X is the inclusion

map.

Corollary 6.15: If X is a complex HIξ Banach space for some 1 6 ξ < ω1,

Y is an infinite dimensional subspace of X and T ∈ L(Y, X), then there exists

λ ∈ C and S ∈ SSξ(Y, X) such that T = λiY,X + S.

Proof. It follows from Theorem 6.14 that T = λiY,X + S for some λ ∈ C

and S ∈ SS(Y, X). Since a subspace of an HIξ-space is again an HIξ-space,

Theorem 6.13 yields that S ∈ SSξ(Y, X).
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Priloženija 7 (1973), 55–56.

[19] J. Lopez–Abad and A. Manoussakis, A classification of Tsirelson type spaces, preprint,

arXiv:math. FA/0510410.

[20] V. D. Milman, Operators of class C0 and C∗
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Priloženija (1970), 15–26.

[21] A. Plichko, Superstrictly singular and superstrictly cosingular operators, in Functional

Analysis and its Applications, Elsevier, Amsterdam, 2004, pp. 239–255.

[22] A. Popov, Schreier singular operators, Houston Journal of Mathematics, to appear.

[23] C. J. Read,A Banach space with, up to equivalence, precisely two symmetric bases,

Israel Journal of Mathematics 40 (1981), 33–53.

[24] C. J. Read, Strictly singular operators and the invariant subspace problem, Studia

Mathematica 132 (1991), 203–226.

[25] H. P. Rosenthal, A characterization of Banach spaces containing l1. Proceedings of the

National Academy of Sciences of the United States of America 71 (1974), 2411–2413.



250 G. ANDROULAKIS ET AL. Isr. J. Math.

[26] B. Sari, Th. Schlumprecht, N. Tomczak–Jaegermann and V. G. Troitsky, On norm

closed ideals in L(`p ⊕ `q), Studia Mathematica 179 (2007), 239–262.

[27] G. Sirotkin, A version of the Lomonosov invariant subspace theorem for real Banach

spaces, Indiana University Mathematics Journal 54 (2005), 257–262.


